UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2006 question paper

0620 CHEMISTRY

0620/03

Paper 3, maximum raw mark 80

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 1		Mark Sch IGCSE – May/s		Syllabus 0620	Paper 03
(a)	used as ca more than Four boxe Four boxe	atalysts one oxid s ticked th s ticked th s ticked th	nly coloured ation state nat include three corre nat include two corre nat include one corre	ect choices [2] ct choices [1]		
(b)	(i) period	14				
	(ii) 26 <i>p</i> a	nd 30 <i>n</i>				
(c)	(i) limest	tone				
	(ii) slag					
	(iii) iron o	re				
(d)	to burn or to make ca					
(e)	mild steel stainless s	steel	cars or machinery cutlery or chemica	-		
						[TOTAL
(a)	W Z Y		and least Y [1] ONL [0]	Y		
(b)	magnesiur copper	m	W Y			
(c)	or mix		burning splint ir and ignited goes p plint	ор		
	univer or pH or hig	rsal indica paper go h pH, acc	ept 13, 14			
	or with NOT ONLY	h metallic litmus	on gives off ammoni cations forms a pred neutralises acids wit /arm.	cipitate	sult,	
	(iii) Group	o 1				
	(iv) electro CONE	olysis) molten				
						[ΤΟΤΑΙ

Page 2	Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2006	0620	03
ammonia 1	0			
hydrochlori	c acid 1			
	c acid 1 Iroxide 13			

3

			correct o correct [1]		[2]
	(b)	fast	h strong acid bulb brighte er rate of bubbles corresponding commen		[1] [1]
	(c)	Ĥ⁺ı	ton NOT hydrogen ion not conditional on proton y way for [2] is proton an		[1] [1]
	(d)	(i)	CaO and MgO		[1]
		(ii)	CO_2 and SO_2		[1]
		(iii)	Al ₂ O ₃		[1]
		(iv)	СО		[1]
					[TOTAL = 10]
4	(a)		e atoms around 1 Ge ks tetrahedral or stated	to be	[1] [1]
	(b)	(i)	Graphite has layers COND that can move/sl	in	[1]
			or weak bonds betweer	•	[1]
			Graphite has delocalise	d/free/mobile electrons	[1]
		(ii)	property <u>and</u> use soft OR good conductor	lubricant or pencils electrodes or in electric motors	[1]
	(c)	(i)	CO_2 and SiO_2 or XO_2		[1]
		(ii)	CO_2 molecular or simpl SiO ₂ macromolecular o	e molecules or simple covalent r giant covalent	[1] [1]
	(d)	Ge ₂	H ₆		[1]
					[TOTAL = 10]

Page 3		e 3	Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2006	0620	03
(a)	(i)	Burn s	sulphur in air (or oxygen)		
	(ii)	as a <u>b</u>	leach		
	(iii)		cteria/micro-organisms prevents food going bad or rotten or decaying		
(b)	(i)	decrea	ase		
	(ii)	exothe			
		endoti OR ar The fo	D increase temperature favours back reaction so it is hermic, so forward reaction must be exothermic my similar explanation will be awarded the mark, for exa prward reaction is not favoured by an increase in tempe s exothermic (rather than endothermic)		
	(iii)	High e Any si	nough for good yield enough for (economic) rate imilar explanation will be awarded the mark ust that it is the optimum temperature		
	(iv)	add w	e into (conc) sulphuric acid ater consequential		
					[ТОТ]
(a)	(i)	Any b	ond that is broken C-H or O=O		
			that is formed C=O or O-H t insist on double bonds		
	(ii)		energy is released forming bonds		
		For ju For - e	s used breaking bonds st - more energy released than used [1] energy is released forming bonds and it is used ing bonds [1]		
(b)	(i)	U 235			
	(ii)		nent of cancer, autoradiographs, tracer, sterilising food, al equipment, measuring thickness, checking welds		
(c)	(i)		tant zinc nt hydrogen (ions)		
	(ii)		esium instead of zinc or increase concentration of acid oper instead of iron		

Page 4		e 4	Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2006	0620	03
	(iii)		cial protection or stop iron/steel rusting vanising		
(d)	(i)	to colo	o r purple ourless or decolourised red NOT clear		
	(ii)	2I [–] – 2 unbala	$2e = I_2$ anced ONLY [1]		
					[ΤΟΤΑΙ
(a)	(i)	any co	prrect equation		
	(ii)		ural formulae from but-1-ene, but-2-ene, methylpropene clobutane Any TWO		
(b)	(i)	light o	r 200°C or lead tetraethyl		
	(ii)		tution or photochemical or chlorination or free radical ogenation		
	(iii)	1-chlo Any T	robutane, 2-chlorobutane, dichlorobutane etc. WO		
(c)	(i)	CH₃C	H ₂ CH ₂ OH or CH ₃ CH(OH)CH ₃		
	(ii)		H(Br)CH₂Br 1,3-dibromopropane		
• •			CH_3 -CH = CH ₂ reacted = 1.4/42 = 0.033		
	max		moles of CH_3 - $CH(I)$ - CH_3 that could be formed = 0.033		
	max acc	ept 170	mass of 2-iodopropane that could be formed = 5.61 g 0 x 0.033 = 5.61 and 170 x 0.033333 = 5.67 nless greater than 100%		
	pero Do a se	centag not m a	e yield 4.0/5.67 x 100 = 70.5% ark consequently to a series of small integers. There attempt to answer the question, then consequential		
	app	nopria			

[TOTAL = 13]

[For paper 12+10+10+10+10+15+13 = 80]